Difference between revisions of "Kelvin ker"
From specialfunctionswiki
Line 8: | Line 8: | ||
</gallery> | </gallery> | ||
</div> | </div> | ||
+ | |||
+ | =Properties= | ||
=References= | =References= | ||
− | + | * {{BookReference|Higher Transcendental Functions Volume II|1953|Harry Bateman|prev=Kelvin bei|next=Kelvin kei}}: $\S 7.2.3 (19)$ | |
{{:Kelvin functions footer}} | {{:Kelvin functions footer}} | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 22:19, 8 July 2016
The $\mathrm{ker}_{\nu}$ function is defined as $$\mathrm{ker}_{\nu}(z)=\mathrm{Re} \left[ e^{-\frac{\nu \pi i}{2}} K_{\nu} \left( z e^{\frac{\pi i}{4}} \right) \right],$$ where $\mathrm{Re}$ denotes the real part of a complex number and $K_{\nu}$ denotes the modified Bessel function $K_{\nu}$.
Domain coloring of $\mathrm{ker}_0$.
Properties
References
- 1953: Harry Bateman: Higher Transcendental Functions Volume II ... (previous) ... (next): $\S 7.2.3 (19)$