2F1(1,1;2;z)=-log(1-z)/z

From specialfunctionswiki
Revision as of 21:15, 26 June 2016 by Tom (talk | contribs) (Created page with "==Theorem== The following formula holds: $${}_2F_1 \left( 1,1 ; 2 ; z \right) = -\dfrac{\log(1-z)}{z},$$ where ${}_2F_1$ denotes the hypergeometric 2F1 and $\log$ denotes...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Theorem

The following formula holds: $${}_2F_1 \left( 1,1 ; 2 ; z \right) = -\dfrac{\log(1-z)}{z},$$ where ${}_2F_1$ denotes the hypergeometric 2F1 and $\log$ denotes the logarithm.

Proof

References