2F1(1,1;2;z)=-log(1-z)/z
From specialfunctionswiki
Revision as of 21:15, 26 June 2016 by Tom (talk | contribs) (Created page with "==Theorem== The following formula holds: $${}_2F_1 \left( 1,1 ; 2 ; z \right) = -\dfrac{\log(1-z)}{z},$$ where ${}_2F_1$ denotes the hypergeometric 2F1 and $\log$ denotes...")
Theorem
The following formula holds: $${}_2F_1 \left( 1,1 ; 2 ; z \right) = -\dfrac{\log(1-z)}{z},$$ where ${}_2F_1$ denotes the hypergeometric 2F1 and $\log$ denotes the logarithm.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous): 15.1.3