F(2n)=F(n+1)^2-F(n-1)^2
From specialfunctionswiki
Theorem
The following formula holds: $$F(2n)=F(n+1)^2-F(n-1)^2,$$ where $F(n)$ denotes a Fibonacci number.
The following formula holds: $$F(2n)=F(n+1)^2-F(n-1)^2,$$ where $F(n)$ denotes a Fibonacci number.