Difference between revisions of "Book:Milton Abramowitz/Handbook of mathematical functions"
From specialfunctionswiki
(→Contents) |
|||
Line 110: | Line 110: | ||
:::[[Abs(e^z-1) less than or equal to e^(abs(z))-1 less than or equal to abs(z)e^(abs(z))|4.2.39]] | :::[[Abs(e^z-1) less than or equal to e^(abs(z))-1 less than or equal to abs(z)e^(abs(z))|4.2.39]] | ||
::4.3. Circular Functions | ::4.3. Circular Functions | ||
+ | :::[[Sine|4.3.1]] | ||
+ | :::[[Cosine|4.3.2]] | ||
+ | :::[[Tangent|4.3.3]] | ||
+ | :::[[Cosecant|4.3.4]] | ||
+ | :::[[Secant|4.3.5]] | ||
+ | :::[[Cotangent|4.3.6]] | ||
::4.4. Inverse Circular Functions | ::4.4. Inverse Circular Functions | ||
::4.5. Hyperbolic Functions | ::4.5. Hyperbolic Functions |
Revision as of 07:12, 8 June 2016
Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions with formulas, graphs, and mathematical tables
Published $1964$, Dover Publications
- ISBN 0-486-61272-4.
Online mirrors
Hosted by specialfunctionswiki
Hosted by Simon Fraser University
Hosted by Institute of Physics, Bhubaneswar
Hosted by Bill Welsh (San Diego State University)
Hong Kong Baptist University
BiBTeX
@book {MR0167642, AUTHOR = {Abramowitz, Milton and Stegun, Irene A.}, TITLE = {Handbook of mathematical functions with formulas, graphs, and mathematical tables}, SERIES = {National Bureau of Standards Applied Mathematics Series}, VOLUME = {55}, PUBLISHER = {For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.}, YEAR = {1964}, PAGES = {xiv+1046}, MRCLASS = {33.00 (65.05)}, MRNUMBER = {0167642}, MRREVIEWER = {D. H. Lehmer}, }
Contents
- Preface
- Foreword
- Introduction
- 1. Mathematical Constants
- 2. Physical Constants and Conversion Factors
- 3. Elementary Analytical Methods
- 3.1. Binomial Theorem and Binomial Coefficients; Arithmetic and Geometric Progressions; Arithmetic, Geometric, Harmonic and Generalized Means
- 3.2. Inequalities
- 3.3. Rules for Differentiation and Integration
- 3.4. Limits, Maxima and Minima
- 3.5. Absolute and Relative Errors
- 3.6. Infinite Series
- 3.7. Complex Numbers and Functions
- 3.8. Algebraic Equations
- 3.9. Successive Approximation Methods
- 3.10. Theorems on Continued Fractions
- 3.11. Use and Extension of the Tables
- 3.12. Computing Techniques
- 4. Elementary Transcendental Functions: Logarithmic, Exponential, Circular and Hyperbolic Functions
- 4.1. Logarithmic Function
- 4.2. Exponential Function
- 5. Exponential Integral and Related Functions
- 5.1. Exponential Integral
- 5.2. Sine and Cosine Integrals
- 5.3. Use and Extension of the Tables
- 6. Gamma Function and Related Functions
- 6.1. Gamma Function
- 6.2. Beta Function
- 6.3. Psi (Digamma Function)
- 6.4. Polygamma Functions
- 6.5. Incomplete Gamma Function
- 6.6. Incomplete Beta Function
- 6.7. Use and Extension of the Tables
- 6.8. Summation of Rational Series by Means of Polygamma Functions
- 7. Error Function and Fresnel Integrals
- 7.1. Error Function
- 7.2. Repeated Integrals of the Error Function
- 7.3. Fresnel Integrals
- 7.4. Definite and Indefinite Integrals
- 7.5. Use and Extension of the Tables
- 8. Legendre Functions
- 8.1. Differential Equation
- 8.2. Relations Between Legendre Functions
- 8.3. Values on the Cut
- 8.4. Explicit Expressions
- 8.5. Recurrence Relations
- 8.6. Special Values
- 8.7. Trigonometric Expressions
- 8.8. Integral Representations
- 8.9. Summation Formulas
- 8.10. Asymptotic Expansions
- 8.11. Toroidal Functions
- 8.12. Conical Functions
- 8.13. Relation to Elliptic Integrals
- 8.14. Integrals
- 8.15. Use and Extension of the Tables
- 9. Bessel Functions of Integer Order
- 9.1. Definitions and Elementary Properties
- 9.2. Asymptotic Expansions for Large Arguments
- 9.3. Asymptotic Expansions for Large Orders
- 9.4. Polynomial Approximations
- 9.5. Zeros
- 9.6. Definitions and Properties
- 9.7. Asymptotic Expansions
- 9.8. Polynomial Approximations
- 9.9. Definitions and Properties
- 9.10. Asymptotic Expansions
- 9.11. Polynomial Approximations
- 9.12. Use and Extension of the Tables
- 10. Bessel Functions of Fractional Order
- 10.1 Spherical Bessel Functions
- 10.2 Modified Spherical Bessel Functions
- 10.3 Riccati-Bessel Functions
- 10.4 Airy Functions
- 10.5 Use and Extension of the Tables
- 11. Integrals of Bessel Functions
- 11.1 Simple Integrals of Bessel Functions
- 11.2 Repeated Integrals of $J_n(z)$ and $K_0(z)$
- 11.3 Reduction Formulas for Indefinite Integrals
- 11.4 Definite Integrals
- 11.5 Use and Extensions of the Tables
- 12. Struve Functions and Related Functions
- 13. Confluent Hypergeometric Functions
- 13.1 Definitions of Kummer and Whittaker Functions
- 13.2 Integral Representations
- 13.3 Connections With Bessel Functions
- 13.4 Recurrence Relations and Differential Properties
- 13.5 Asymptotic Expansions and Limiting Forms
- 13.6 Special Cases
- 13.7 Zeros and Turning Values
- 13.8 Use and Extension of the Tables
- 13.9 Calculation of the Zeros and Turning Points
- 13.10 Graphing $M(a,b,x)$
- 14. Coulomb Wave Functions
- 14.1 Differential Equation, Series Expansions
- 14.2 Recurrence and Wronskian Relations
- 14.3 Integral Representations
- 14.4 Bessel Function Expansions
- 14.5 Asymptotic Expansions
- 14.6 Special Values and Asymptotic Behavior
- 14.7 Use and Extension of the Tables
- 15. Hypergeometric Functions
- 15.1 Gauss Series, Special Elementary Cases, Special Values of the Argument
- 15.2 Differentiation Formulas and Gauss' Relations for Contiguous Functions
- 15.3 Integral Representations and Transformation Formulas
- 15.4 Special Cases of $F(a,b;c;z)$, Polynomials and Legendre Functions
- 15.5 The Hypergeometric Differential Equation
- 15.6 Riemann's Differential Equation
- 15.7 Asymptotic Expansions
- 16. Jacobian Elliptic Functions and Theta Functions
- 16.1 Introduction
- 16.2 Classification of the Twelve Jacobian Elliptic Functions
- 16.3 Relation of the Jacobian Functions to the Copolor Trio
- 16.4 Calculation of the Jacobian Functions by Use of the Arithmetic-Geometric Mean (A.G.M.)
- 16.5 Special Arguments
- 16.6 Jacobian Functions when $m=0$ or $1$
- 16.7 Principal Terms
- 16.8 Change of Argument
- 16.9 Relations Between the Squares of the Functions
- 16.10 Change of Parameter
- 16.11 Reciprocal Parameter
- 16.12 Descending Landen Transformation (Gauss' Transformation)
- 16.13 Approximation in Terms of Circular Functions
- 16.14 Ascending Landen Transformation
- 16.15 Approximation in Terms of Hyperbolic Functions
- 16.16 Derivatives
- 16.17 Addition Theorems
- 16.18 Double Arguments
- 16.19 Half Arguments
- 16.20 Jacobi's Imaginary Transformation
- 16.21 Complex Arguments
- 16.22 Leading Terms of the Series in Ascending Powers of $u$
- 16.23 Series Expansion in Terms of the Nome $q$
- 16.24 Integrals of the Twelve Jacobian Elliptic Functions
- 16.25 Notation for the Integrals of the Squares of the Twelve Jacobian Elliptic Functions
- 16.26 Integrals in Terms of the Elliptic Integral of the Second Kind
- 16.27 Theta Functions; Expansions in Terms of the Nome $q$
- 16.28 Relations Between the Squares of the Theta Functions
- 16.29 Logarithmic Derivatives of the Theta Functions
- 16.30 Logarithms of Theta Functions of Sum and Difference
- 16.31 Jacobi's Notation for Theta Functions
- 16.32 Calculation of Jacobi's Theta Function $\Theta(u|m)$ by Use of the Arithmetic-Geometric Mean
- 16.33 Addition of Quarter-Periods to Jacobi's Eta and Theta Functions
- 16.34 Relation of Jacobi's Zeta Function to the Theta Functions
- 16.35 Calculation of Jacobi's Zeta Function $Z(u|m)$ by Use of the Arithmetic-Geometric Mean
- 16.36 Neville's Notation for Theta Functions
- 16.37 Expression as Infinite Products
- 16.38 Expression as Infinite Series
- 16.39 Use and Extension of the Tables
- 17. Elliptic Integrals
- 17.1 Definition of Elliptic Integrals
- 17.2 Canonical Forms
- 17.3 Complete Elliptic Integrals of the First and Second Kinds
- 17.4 Incomplete Elliptic Integrals of the First and Second Kinds
- 17.5 Landen's Transformation
- 17.6 The Process of the Arithmetic-Geometric Mean
- 17.7 Elliptic Integrals of the Third Kind
- 17.8 Use and Extension of the Tables
- 18. Weierstrass Elliptic and Related Functions
- 18.1 Definitions, Symbolism, Restrictions and Conventions
- 18.2 Homogeneity Relations, Reduction Formulas and Processes
- 18.3 Special Values and Relations
- 18.4 Addition and Multiplication Formulas
- 18.5 Series Expansions
- 18.6 Derivatives and Differential Equations
- 18.7 Integrals
- 18.8 Conformal Mapping
- 18.9 Relations with Complete Elliptic Integrals $K$ and $K'$ and Their Parameter $m$ and with Jacobi's Elliptic Functions
- 18.10 Relations with Theta Functions
- 18.11 Expressing and Elliptic Function in Terms of $\wp$ and $\wp'$
- 18.12 Case $\Delta=0$
- 18.13 Equianharmonic Case ($g_2=0,g_3=1$)
- 18.14 Lemniscatic Case ($g_2=1, g_3=0$)
- 18.15 Pseudo-Lemniscatic Case ($g_2=-1, g_3=0$)
- 18.16 Use and Extension of the Tables
- 19. Parabolic Cylinder Functions
- 20. Mathieu Functions
- 21. Spheroidal Wave Functions
- 22. Orthogonal Polynomials
- 23. Bernoulli and Euler Polynomials, Riemann Zeta Function
- 24. Combinatorial Analysis
- 25. Numerical Interpolation, Differentiation and Integration
- 26. Probability Functions
- 27. Miscellaneous Functions
- 28. Scales of Notation
- 29. Laplace Transforms
- Subject Index
- Index of Notations