Difference between revisions of "Struve function"

From specialfunctionswiki
Jump to: navigation, search
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The Struve functions are defined by
 
The Struve functions are defined by
$$\mathbf{H}_{\nu}(z)=\left(\dfrac{z}{2}\right)^{\nu+1} \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k\left(\frac{z}{2}\right)^{2k}}{\Gamma(k+\frac{3}{2})\Gamma(k+\nu+\frac{3}{2})}$$
+
$$\mathbf{H}_{\nu}(z)=\left(\dfrac{z}{2}\right)^{\nu+1} \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k\left(\frac{z}{2}\right)^{2k}}{\Gamma(k+\frac{3}{2})\Gamma \left(k+\nu+\frac{3}{2} \right)}.$$
  
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
 +
File:Struveh0plot.png|Struve $\mathbf{H}_0$.
 +
File:Struveplots.png|Various Struve functions.
 
File:Struvefunctions(abramowitzandstegun).png|Struve functions from Abramowitz&Stegun.
 
File:Struvefunctions(abramowitzandstegun).png|Struve functions from Abramowitz&Stegun.
 
</gallery>
 
</gallery>
Line 10: Line 12:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem:</strong> If $x >0$ and $\nu \geq \dfrac{1}{2}$, then $\mathbf{H}_{\nu}(x) \geq 0$.
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>  █
 
</div>
 
</div>
 
 
 
[[Relationship between Struve function and hypergeometric pFq]]<br />
 
[[Relationship between Struve function and hypergeometric pFq]]<br />
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The Struve function $H_n$ solves the following nonohomogeneous [[Bessel]] differential equation
 
$$x^2y''(x)+xy'(x)+(x^2-n^2)y(x)=\dfrac{4(\frac{x}{2})^{n+1}}{\sqrt{\pi}\Gamma(n+\frac{1}{2})}.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
 
[[Relationship between Weber function 0 and Struve function 0]]<br />
 
[[Relationship between Weber function 0 and Struve function 0]]<br />
 
[[Relationship between Weber function 1 and Struve function 1]]<br />
 
[[Relationship between Weber function 1 and Struve function 1]]<br />
 +
[[Integral representation of Struve function]]<br />
 +
[[Integral representation of Struve function (2)]]<br />
 +
[[Integral representation of Struve function (3)]]<br />
 +
[[Recurrence relation for Struve fuction]]<br />
 +
[[Recurrence relation for Struve function (2)]]<br />
 +
[[Derivative of Struve H0]]<br />
 +
[[D/dz(z^(nu)H (nu))=z^(nu)H (nu-1)]]<br />
 +
[[D/dz(z^(-nu)H (nu))=1/(sqrt(pi)2^(nu)Gamma(nu+3/2))-z^(-nu)H (nu+1)]]<br />
 +
[[H (nu)(x) geq 0 for x gt 0 and nu geq 1/2]]<br />
 +
[[H (-(n+1/2))(z)=(-1)^n J (n+1/2)(z) for integer n geq 0]]<br />
 +
[[H (1/2)(z)=sqrt(2/(pi z))(1-cos(z))]]<br />
 +
[[H (3/2)(z)=sqrt(z/(2pi))(1+2/z^2)-sqrt(2/(pi z))(sin(z)+cos(z)/z)]]<br />
  
 
=References=
 
=References=
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_496.htm Struve functions in Abramowitz&Stegun]
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Struve H0}}: $12.1.3$
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 01:09, 21 December 2017

The Struve functions are defined by $$\mathbf{H}_{\nu}(z)=\left(\dfrac{z}{2}\right)^{\nu+1} \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k\left(\frac{z}{2}\right)^{2k}}{\Gamma(k+\frac{3}{2})\Gamma \left(k+\nu+\frac{3}{2} \right)}.$$


Properties

Relationship between Struve function and hypergeometric pFq
Relationship between Weber function 0 and Struve function 0
Relationship between Weber function 1 and Struve function 1
Integral representation of Struve function
Integral representation of Struve function (2)
Integral representation of Struve function (3)
Recurrence relation for Struve fuction
Recurrence relation for Struve function (2)
Derivative of Struve H0
D/dz(z^(nu)H (nu))=z^(nu)H (nu-1)
D/dz(z^(-nu)H (nu))=1/(sqrt(pi)2^(nu)Gamma(nu+3/2))-z^(-nu)H (nu+1)
H (nu)(x) geq 0 for x gt 0 and nu geq 1/2
H (-(n+1/2))(z)=(-1)^n J (n+1/2)(z) for integer n geq 0
H (1/2)(z)=sqrt(2/(pi z))(1-cos(z))
H (3/2)(z)=sqrt(z/(2pi))(1+2/z^2)-sqrt(2/(pi z))(sin(z)+cos(z)/z)

References