Difference between revisions of "Struve function"

From specialfunctionswiki
Jump to: navigation, search
 
(2 intermediate revisions by the same user not shown)
Line 15: Line 15:
 
[[Relationship between Weber function 0 and Struve function 0]]<br />
 
[[Relationship between Weber function 0 and Struve function 0]]<br />
 
[[Relationship between Weber function 1 and Struve function 1]]<br />
 
[[Relationship between Weber function 1 and Struve function 1]]<br />
 +
[[Integral representation of Struve function]]<br />
 +
[[Integral representation of Struve function (2)]]<br />
 +
[[Integral representation of Struve function (3)]]<br />
 +
[[Recurrence relation for Struve fuction]]<br />
 +
[[Recurrence relation for Struve function (2)]]<br />
 +
[[Derivative of Struve H0]]<br />
 +
[[D/dz(z^(nu)H (nu))=z^(nu)H (nu-1)]]<br />
 +
[[D/dz(z^(-nu)H (nu))=1/(sqrt(pi)2^(nu)Gamma(nu+3/2))-z^(-nu)H (nu+1)]]<br />
 +
[[H (nu)(x) geq 0 for x gt 0 and nu geq 1/2]]<br />
 +
[[H (-(n+1/2))(z)=(-1)^n J (n+1/2)(z) for integer n geq 0]]<br />
 +
[[H (1/2)(z)=sqrt(2/(pi z))(1-cos(z))]]<br />
 +
[[H (3/2)(z)=sqrt(z/(2pi))(1+2/z^2)-sqrt(2/(pi z))(sin(z)+cos(z)/z)]]<br />
  
 
=References=
 
=References=

Latest revision as of 01:09, 21 December 2017

The Struve functions are defined by $$\mathbf{H}_{\nu}(z)=\left(\dfrac{z}{2}\right)^{\nu+1} \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k\left(\frac{z}{2}\right)^{2k}}{\Gamma(k+\frac{3}{2})\Gamma \left(k+\nu+\frac{3}{2} \right)}.$$


Properties

Relationship between Struve function and hypergeometric pFq
Relationship between Weber function 0 and Struve function 0
Relationship between Weber function 1 and Struve function 1
Integral representation of Struve function
Integral representation of Struve function (2)
Integral representation of Struve function (3)
Recurrence relation for Struve fuction
Recurrence relation for Struve function (2)
Derivative of Struve H0
D/dz(z^(nu)H (nu))=z^(nu)H (nu-1)
D/dz(z^(-nu)H (nu))=1/(sqrt(pi)2^(nu)Gamma(nu+3/2))-z^(-nu)H (nu+1)
H (nu)(x) geq 0 for x gt 0 and nu geq 1/2
H (-(n+1/2))(z)=(-1)^n J (n+1/2)(z) for integer n geq 0
H (1/2)(z)=sqrt(2/(pi z))(1-cos(z))
H (3/2)(z)=sqrt(z/(2pi))(1+2/z^2)-sqrt(2/(pi z))(sin(z)+cos(z)/z)

References