Oldest pages

Jump to: navigation, search

Showing below up to 50 results in range #1,001 to #1,050.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)

  1. Basic hypergeometric phi‏‎ (23:26, 3 March 2018)
  2. 1Phi0(a;;z) as infinite product‏‎ (23:26, 3 March 2018)
  3. 1Phi0(a;;z)1Phi0(b;;az)=1Phi0(ab;;z)‏‎ (23:26, 3 March 2018)
  4. (z/(1-q))2Phi1(q,q;q^2;z)=Sum z^k/(1-q^k)‏‎ (23:26, 3 March 2018)
  5. 2Phi1(q,-1;-q;z)=1+2Sum z^k/(1+q^k)‏‎ (23:27, 3 March 2018)
  6. Z/(1-sqrt(q))2Phi1(q,sqrt(q);sqrt(q^3);z)=Sum z^k/(1-q^(k-1/2))‏‎ (23:27, 3 March 2018)
  7. Euler numbers‏‎ (01:04, 4 March 2018)
  8. Euler E‏‎ (01:05, 4 March 2018)
  9. Euler E generating function‏‎ (01:05, 4 March 2018)
  10. Euler E n'(x)=nE n-1(x)‏‎ (01:07, 4 March 2018)
  11. Book:Norman L. Johnson/Continuous Univariate Distributions Volume 2/Second Edition‏‎ (05:39, 4 March 2018)
  12. Bessel J‏‎ (05:41, 4 March 2018)
  13. Kelvin ber‏‎ (05:41, 4 March 2018)
  14. Kelvin ker‏‎ (05:42, 4 March 2018)
  15. Kelvin bei‏‎ (05:42, 4 March 2018)
  16. Kelvin kei‏‎ (05:42, 4 March 2018)
  17. Book:Arthur Erdélyi/Higher Transcendental Functions Volume III‏‎ (05:44, 4 March 2018)
  18. Book:Arthur Erdélyi/Higher Transcendental Functions Volume II‏‎ (05:44, 4 March 2018)
  19. Coth‏‎ (05:53, 4 March 2018)
  20. Z coth(z) = 2z/(e^(2z)-1) + z‏‎ (05:57, 4 March 2018)
  21. Z coth(z) = sum of 2^(2n)B (2n) z^(2n)/(2n)!‏‎ (06:03, 4 March 2018)
  22. Z coth(z) = 2 Sum of (-1)^(n+1) zeta(2n) z^(2n)/pi^(2n)‏‎ (06:05, 4 March 2018)
  23. Book:Arthur Erdélyi/Higher Transcendental Functions Volume I‏‎ (06:07, 4 March 2018)
  24. Cauchy pdf‏‎ (15:39, 9 March 2018)
  25. Cauchy cdf‏‎ (15:41, 9 March 2018)
  26. Arcsin pdf‏‎ (15:44, 9 March 2018)
  27. Exponential pdf‏‎ (03:10, 12 March 2018)
  28. Exponential cdf‏‎ (03:11, 12 March 2018)
  29. Laplace cdf‏‎ (03:16, 12 March 2018)
  30. Laplace pdf‏‎ (03:18, 12 March 2018)
  31. Normal pdf‏‎ (03:22, 12 March 2018)
  32. Normal cdf‏‎ (03:26, 12 March 2018)
  33. Continuous uniform pdf‏‎ (03:31, 12 March 2018)
  34. Continuous uniform cdf‏‎ (03:33, 12 March 2018)
  35. Arcsin cdf‏‎ (03:35, 12 March 2018)
  36. Associated Laguerre L‏‎ (13:38, 15 March 2018)
  37. Generating function for Laguerre L‏‎ (14:08, 15 March 2018)
  38. L n(x)=(e^x/n!)d^n/dx^n(x^n e^(-x))‏‎ (14:15, 15 March 2018)
  39. L n(0)=1‏‎ (14:17, 15 March 2018)
  40. L n'(0)=-n‏‎ (14:18, 15 March 2018)
  41. Kronecker delta‏‎ (14:21, 15 March 2018)
  42. Orthogonality of Laguerre L‏‎ (14:30, 15 March 2018)
  43. (n+1)L (n+1)(x) = (2n+1-x)L n(x)-nL (n-1)(x)‏‎ (14:32, 15 March 2018)
  44. XL n'(x)=nL n(x)-n L (n-1)(x)‏‎ (14:35, 15 March 2018)
  45. L n'(x)=-Sum L k(x)‏‎ (14:36, 15 March 2018)
  46. Laguerre L‏‎ (14:37, 15 March 2018)
  47. Hypergeometric pFq‏‎ (14:42, 15 March 2018)
  48. T n(x)=(1/2)(x+i sqrt(1-x^2))^n+(1/2)(x-i sqrt(1-x^2))^n‏‎ (19:18, 15 March 2018)
  49. U n(x)=(-i/2)(x+i sqrt(1-x^2))^n+(-i/2)(x-i sqrt(1-x^2))^n‏‎ (19:22, 15 March 2018)
  50. T n(x)=Sum (-1)^k n!/((2k)! (n-2k)!) (1-x^2)^k x^(n-2k)‏‎ (19:28, 15 March 2018)

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)