Difference between revisions of "Book:Arthur Erdélyi/Higher Transcendental Functions Volume I"
From specialfunctionswiki
(→Contents) |
|||
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
− | {{Book|Higher Transcendental Functions, Volume I|1953|Dover Publications|0-486-44614-X| | + | {{Book|Higher Transcendental Functions, Volume I|1953|Dover Publications|0-486-44614-X|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi}} |
===Online mirrors=== | ===Online mirrors=== | ||
Line 21: | Line 21: | ||
::[[Beta|$(1)$]] | ::[[Beta|$(1)$]] | ||
::[[Beta as improper integral|$(2)$]] | ::[[Beta as improper integral|$(2)$]] | ||
− | ::---- | + | ::[[B(x,y)=integral (t^(x-1)+t^(y-1))(1+t)^(-x-y) dt|$(3)$]] |
::[[Beta is symmetric|$(4)$]] | ::[[Beta is symmetric|$(4)$]] | ||
::[[Beta as product of gamma functions|$(5)$]] | ::[[Beta as product of gamma functions|$(5)$]] | ||
Line 56: | Line 56: | ||
:1.10. The generalized zeta function | :1.10. The generalized zeta function | ||
:1.11. The function $\Phi(z,s,v)= \displaystyle\sum_{n=0}^{\infty} (v+n)^{-s}z^n$ | :1.11. The function $\Phi(z,s,v)= \displaystyle\sum_{n=0}^{\infty} (v+n)^{-s}z^n$ | ||
+ | ::[[Lerch transcendent|$(1)$]] | ||
+ | ::-------------- | ||
::1.11.1 Euler's dilogarithm | ::1.11.1 Euler's dilogarithm | ||
+ | ::[[Dilogarithm|$(22)$]] (also [[Relationship between dilogarithm and log(1-z)/z|(22)]] and [[Li2(z)=zPhi(z,2,1)|(22)]]) | ||
+ | ::[[Li 2(z)=-Li 2(1/z)-(1/2)(log z)^2 + i pi log(z) + pi^2/3|$(23)$]] | ||
:1.12. The zeta function of Riemann | :1.12. The zeta function of Riemann | ||
:1.13. Bernoulli's numbers and polynomials | :1.13. Bernoulli's numbers and polynomials | ||
+ | ::[[Bernoulli numbers|$(1)$]] | ||
:1.14. Euler numbers and polynomials | :1.14. Euler numbers and polynomials | ||
+ | ::[[Euler numbers|$(1)$]] | ||
+ | ::[[Euler E generating function|$(2)$]] | ||
+ | ::[[Euler E n'(x)=nE n-1(x)|$(3)$]] | ||
::1.14.1. The Euler polynomials of higher order | ::1.14.1. The Euler polynomials of higher order | ||
:1.15. Some integral formulas connected with the Bernoulli and Euler polynomials | :1.15. Some integral formulas connected with the Bernoulli and Euler polynomials | ||
Line 67: | Line 75: | ||
:1.19. Mellin-Barnes integrals | :1.19. Mellin-Barnes integrals | ||
:1.20. Power series of some trigonometric functions | :1.20. Power series of some trigonometric functions | ||
+ | ::[[z coth(z) = 2z/(e^(2z)-1) + z|$(1)$]] (and [[z coth(z) = sum of 2^(2n)B_(2n) z^(2n)/(2n)!|$(1)$]] and [[z coth(z) = 2 Sum of (-1)^(n+1) zeta(2n) z^(2n)/pi^(2n)|$(1)$]]) | ||
:1.21. Some other notations and symbols | :1.21. Some other notations and symbols | ||
:References | :References | ||
Line 217: | Line 226: | ||
===See also=== | ===See also=== | ||
− | [[Book: | + | [[Book:Arthur Erdélyi/Higher Transcendental Functions Volume II]]<br /> |
− | [[Book: | + | [[Book:Arthur Erdélyi/Higher Transcendental Functions Volume III]]<br /> |
[[Category:Book]] | [[Category:Book]] |
Latest revision as of 06:07, 4 March 2018
Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions, Volume I
Published $1953$, Dover Publications
- ISBN 0-486-44614-X.
Online mirrors
Contents
- PREFACE
- FOREWARD
- INTRODUCTION
- 1.1. Definition of the gamma function
- 1.2. Functional equations satisfied by $\Gamma(z)$
- 1.3. Expressions for some infinite products in terms of the gamma function
- 1.4. Some infinite sums connected with the gamma function
- 1.5. The beta function
- 1.6. The gamma and beta functions expressed as contour integrals
- 1.7. The $\psi$ function
- 1.8. The function $G(z)$
- 1.9. Expressions for the function $\log \Gamma(z)$
- 1.9.1. Kummer's series for $\log \Gamma(z)$
- 1.10. The generalized zeta function
- 1.11. The function $\Phi(z,s,v)= \displaystyle\sum_{n=0}^{\infty} (v+n)^{-s}z^n$
- 1.12. The zeta function of Riemann
- 1.13. Bernoulli's numbers and polynomials
- 1.14. Euler numbers and polynomials
- 1.15. Some integral formulas connected with the Bernoulli and Euler polynomials
- 1.16. Polygamma functions
- 1.17. Some expansions for $\log \Gamma(1+z)$, $\psi(1+z)$, $G(1+z)$, and $\Gamma(z)$
- 1.18. Asymptotic expansions
- 1.19. Mellin-Barnes integrals
- 1.20. Power series of some trigonometric functions
- 1.21. Some other notations and symbols
- References
- 2.1. The hypergeometric series
- 2.1.1. The hypergeometric equation
- 2.1.2. Elementary relations
- 2.1.3. The fundamental integral representation
- 2.1.4. Analytic continuation of the hypergeometric series
- 2.1.5. Quadratic and cubic transformations
- 2.1.6. $F(a,b;c;z)$ as function of the parameters
- 2.2. The degenerate case of the hypergeometric equation
- 2.2.1. A particular solution
- 2.2.2. The full solution and asymptotic expansion in the general case
- 2.3. The full solution and asymptotic expansion in the general case
- 2.3.1. Linearly independent solutions of the hypergeometric equation in the non-degenerate case
- 2.3.2. Asymptotic expansions
- 2.4. Integrals representing or involving hypergeometric functions
- 2.5. Miscellaneous results
- 2.5.1. A generating function
- 2.5.2. Products of hypergeometric series
- 2.5.3. Relations involving binomial coefficients and the incomplete beta function
- 2.5.4. A continued fraction
- 2.5.5. Special cases of the hypergeometric function
- 2.6. Riemann's equation
- 2.6.1. Reduction to the hypergeometric equation
- 2.6.2. Quadratic and cubic transformations
- 2.7. Conformation representations
- 2.7.1. Group of the hypergeometric equation
- 2.7.2. Schwarz's function
- 2.7.3. Uniformization
- 2.7.4. Zeros
- 2.8. The hypergeometric series
- 2.9. Kummer's series and the relations between them
- 2.10. Analytic continuation
- 2.11. Quadratic and higher transformations
- 2.12. Integrals
- References
- 3.1. Introduction
- 3.2. The solutions of Legendre's differential eqaution
- 3.3.1. Relations between Legendre functions
- 3.3.2. Some further relations with hypergeometric series
- 3.4. Legendre's functions on the cut
- 3.5. Trigonometric expansions for $P_{\nu}^{\mu}(\cos \theta)$ and $Q_{\nu}^{\mu}(\cos \theta)$
- 3.6.1. Special values of $\mu$ and $\nu$
- 3.6.2. Legendre polynomials
- 3.7. Integral representations
- 3.8. Relations between contiguous Legendre functions
- 3.9.1. Asymptotic expansions
- 3.9.2. Behavior of the Legendre functions near the singular points
- 3.10. Expansions in terms of Legendre functions
- 3.11. The addition theorems
- 3.12. Integrals involving Legendre functions
- 3.13. The ring or toroidal functions
- 3.14. The conical functions
- 3.15. Gegenbauer functions
- 3.15.1. Gegenbauer polynomials
- 3.15.2. Gegenbauer functions
- 3.16. Some other notations
- References
- 4.1. Introduction
- 4.2. Differential equations
- 4.3. Identities and recurrence relations
- 4.4. Generalized hypergeometric series with unit argument in the case $p=q+1$
- 4.5. Transformations of ${}_{q+1}F_q$ and values for arguments other than unity
- 4.6. Integrals
- 4.7. Various special results
- 4.8. Basic hypergeometric series
- References
- 5.1. Various generalizations
- 5.2. Definition of the $E$-function
- 5.2.1. Recurrence relations
- 5.2.2. Integrals
- 5.3. Definition of the $G$-function
- 5.3.1. Simple identities
- 5.4. Differential equations
- 5.4.1. Asymptotic expansions
- 5.5. Series and integrals
- 5.5.1. Series of $G$-functions
- 5.5.2. Integrals with $G$-functions
- 5.7. Hypergeometric series in two variables
- 5.7.1. Horn's list
- 5.7.2. Convergence of the series
- 5.8. Integral representations
- 5.8.1. Double integrals of Euler's type
- 5.8.2. Single integrals of Euler's type
- 5.8.3. Mellin-Barnes type double integrals
- 5.9. Systems of partial differential equations
- 5.9.1. Ince's investigation
- 5.10. Reduction formulas
- 5.11. Transformations
- 5.12. Symbolic forms and expansions
- 5.13. Special cases
- 5.14. Further Series
- References
- 6.1. Orientation
- 6.2. Differential equations
- 6.3. The general solution of the confluent equation near the origin
- 6.4. Elementary relations for the $\Phi$ function
- 6.5. Basic integral representations
- 6.6. Elementary relations for the $\Psi$ function
- 6.7. Fundamental systems of solutions of the confluent equation
- 6.7.1. The logarithmic case
- 6.8. Further properties of the $\Psi$ function
- 6.9. Whittaker functions
- 6.9.1. Bessel functions
- 6.9.2. Other particular confluent hypergeometric functions
- 6.10. Laplace transforms and confluent hypegeometric functions
- 6.11. Integral representations
- 6.11.1. The $\Phi$ function
- 6.11.2. The $\Psi$ function
- 6.12. Expansions in terms of Laguerre polynomials and Bessel functions
- 6.13. Asymptotic behavior
- 6.13.1. Behavior for large $|x|$
- 6.13.2. Large parameters
- 6.13.3. Variable and parameters large
- 6.14. Multiplication theorems
- 6.15. Series and integral formulas
- 6.15.1. Series
- 6.15.2. Integrals
- 6.15.3. Products of confluent hypergeometric functions
- 6.16. Real zeros for real $a,c$
- 6.17. Descriptive properties for real $a,c,x$
- References
- SUBJECT INDEX
- INDEX OF NOTATIONS
See also
Book:Arthur Erdélyi/Higher Transcendental Functions Volume II
Book:Arthur Erdélyi/Higher Transcendental Functions Volume III