Difference between revisions of "Book:Milton Abramowitz/Handbook of mathematical functions"
From specialfunctionswiki
Line 187: | Line 187: | ||
::6.3. Psi (Digamma Function) | ::6.3. Psi (Digamma Function) | ||
::6.4. Polygamma Functions | ::6.4. Polygamma Functions | ||
− | :::[[Polygamma|6.4.1]] (and [[Integral representation of polygamma for Re(z) greater than 0|6.4.1]]) | + | :::[[Polygamma|$6.4.1$]] (and [[Integral representation of polygamma for Re(z) greater than 0|$6.4.1$]]) |
− | :::[[Value of polygamma at 1|6.4.2]] | + | :::[[Value of polygamma at 1|$6.4.2$]] |
− | :::[[Value of polygamma at positive integer|6.4.3]] | + | :::[[Value of polygamma at positive integer|$6.4.3$]] |
− | :::[[Value of polygamma at 1/2|6.4.4]] | + | :::[[Value of polygamma at 1/2|$6.4.4$]] |
− | :::[[Value of derivative of trigamma at positive integer plus 1/2|6.4.5]] | + | :::[[Value of derivative of trigamma at positive integer plus 1/2|$6.4.5$]] |
− | :::[[Polygamma recurrence relation|6.4.6]] | + | :::[[Polygamma recurrence relation|$6.4.6$]] |
− | :::[[Polygamma reflection formula|6.4.7]] | + | :::[[Polygamma reflection formula|$6.4.7$]] |
− | :::[[Polygamma multiplication formula|6.4.8]] | + | :::[[Polygamma multiplication formula|$6.4.8$]] |
− | :::6.4.9 | + | :::$6.4.9$ |
− | :::6.4.10 | + | :::$6.4.10$ |
− | :::6.4.11 | + | :::$6.4.11$ |
− | :::6.4.12 | + | :::$6.4.12$ |
− | :::6.4.13 | + | :::$6.4.13$ |
− | :::6.4.14 | + | :::$6.4.14$ |
::6.5. Incomplete Gamma Function | ::6.5. Incomplete Gamma Function | ||
::6.6. Incomplete Beta Function | ::6.6. Incomplete Beta Function | ||
Line 207: | Line 207: | ||
:7. Error Function and Fresnel Integrals | :7. Error Function and Fresnel Integrals | ||
::7.1. Error Function | ::7.1. Error Function | ||
− | :::[[Error function|7.1.1]] | + | :::[[Error function|$7.1.1$]] |
− | :::[[Erfc|7.1.2]] | + | :::[[Erfc|$7.1.2$]] |
− | :::[[Two-sided inequality for e^(x^2) integral from x to infinity e^(-t^2) dt for non-negative real x|7.1.3]] | + | :::[[Two-sided inequality for e^(x^2) integral from x to infinity e^(-t^2) dt for non-negative real x|$7.1.3$]] |
− | :::7.1.4 | + | :::$7.1.4$ |
− | :::[[Taylor series for error function|7.1.5]] | + | :::[[Taylor series for error function|$7.1.5$]] |
− | :::7.1.6 | + | :::$7.1.6$ |
− | :::7.1.7 | + | :::$7.1.7$ |
− | :::7.1.8 | + | :::$7.1.8$ |
− | :::[[Error function is odd|7.1.9]] | + | :::[[Error function is odd|$7.1.9$]] |
− | :::[[Erf of conjugate is conjugate of erf|7.1.10]] | + | :::[[Erf of conjugate is conjugate of erf|$7.1.10$]] |
− | :::7.1.11 | + | :::$7.1.11$ |
− | :::7.1.12 | + | :::$7.1.12$ |
− | :::7.1.13 | + | :::$7.1.13$ |
− | :::[[Continued fraction for 2e^(z^2) integral from z to infinity e^(-t^2) dt for positive Re(z)|7.1.14]] | + | :::[[Continued fraction for 2e^(z^2) integral from z to infinity e^(-t^2) dt for positive Re(z)|$7.1.14$]] |
− | :::[[Continued fraction for 1/sqrt(pi) integral from -infinity to infinity of e^(-t^2)/(z-t) dt|7.1.15]] | + | :::[[Continued fraction for 1/sqrt(pi) integral from -infinity to infinity of e^(-t^2)/(z-t) dt|$7.1.15$]] |
− | :::[[Limit of erf when z approaches infinity and the modulus of arg(z) is less than pi/4|7.1.16]] | + | :::[[Limit of erf when z approaches infinity and the modulus of arg(z) is less than pi/4|$7.1.16$]] |
− | :::7.1.17 | + | :::$7.1.17$ |
− | :::7.1.18 | + | :::$7.1.18$ |
− | :::7.1.19 | + | :::$7.1.19$ |
− | :::7.1.20 | + | :::$7.1.20$ |
− | :::7.1.21 | + | :::$7.1.21$ |
− | :::7.1.22 | + | :::$7.1.22$ |
− | :::7.1.23 | + | :::$7.1.23$ |
− | :::7.1.24 | + | :::$7.1.24$ |
− | :::7.1.25 | + | :::$7.1.25$ |
− | :::7.1.26 | + | :::$7.1.26$ |
− | :::7.1.27 | + | :::$7.1.27$ |
− | :::7.1.28 | + | :::$7.1.28$ |
− | :::7.1.29 | + | :::$7.1.29$ |
::7.2. Repeated Integrals of the Error Function | ::7.2. Repeated Integrals of the Error Function | ||
::7.3. Fresnel Integrals | ::7.3. Fresnel Integrals | ||
Line 258: | Line 258: | ||
:9. Bessel Functions of Integer Order | :9. Bessel Functions of Integer Order | ||
::9.1. Definitions and Elementary Properties | ::9.1. Definitions and Elementary Properties | ||
− | :::9.1.1 | + | :::$9.1.1$ |
− | :::[[Bessel Y|9.1.2]] | + | :::[[Bessel Y|$9.1.2$]] |
− | :::[[Hankel H (1)|9.1.3]] (and [[Hankel H (1) in terms of csc and Bessel J|9.1.3]]) | + | :::[[Hankel H (1)|$9.1.3$]] (and [[Hankel H (1) in terms of csc and Bessel J|$9.1.3$]]) |
− | :::[[Hankel H (2)|9.1.4]] (and [[Hankel H (2) in terms of csc and Bessel J|9.1.4]]) | + | :::[[Hankel H (2)|$9.1.4$]] (and [[Hankel H (2) in terms of csc and Bessel J|$9.1.4$]]) |
− | :::[[Relationship between Bessel J sub n and Bessel J sub -n|9.1.5]] (and [[Relationship between Bessel Y sub n and Bessel Y sub -n|9.1.5]]) | + | :::[[Relationship between Bessel J sub n and Bessel J sub -n|9.1.5]] (and [[Relationship between Bessel Y sub n and Bessel Y sub -n|$9.1.5$]]) |
− | :::9.1.6 | + | :::$9.1.6$ |
− | :::9.1.7 | + | :::$9.1.7$ |
− | :::9.1.8 | + | :::$9.1.8$ |
− | :::9.1.9 | + | :::$9.1.9$ |
− | :::[[Bessel J|9.1.10]] | + | :::[[Bessel J|$9.1.10$]] |
− | :::9.1.11 | + | :::$9.1.11$ |
− | :::9.1.12 | + | :::$9.1.12$ |
− | :::9.1.13 | + | :::$9.1.13$ |
− | :::9.1.14 | + | :::$9.1.14$ |
− | :::9.1.15 | + | :::$9.1.15$ |
− | :::9.1.16 | + | :::$9.1.16$ |
− | :::9.1.17 | + | :::$9.1.17$ |
− | :::9.1.18 | + | :::$9.1.18$ |
− | :::9.1.19 | + | :::$9.1.19$ |
− | :::9.1.20 | + | :::$9.1.20$ |
− | :::9.1.21 | + | :::$9.1.21$ |
− | :::9.1.22 | + | :::$9.1.22$ |
− | :::9.1.23 | + | :::$9.1.23$ |
− | :::9.1.24 | + | :::$9.1.24$ |
− | :::9.1.25 | + | :::$9.1.25$ |
− | :::9.1.26 | + | :::$9.1.26$ |
− | :::9.1.27 | + | :::$9.1.27$ |
− | :::9.1.28 | + | :::$9.1.28$ |
− | :::9.1.29 | + | :::$9.1.29$ |
− | :::9.1.30 | + | :::$9.1.30$ |
− | :::9.1.31 | + | :::$9.1.31$ |
− | :::9.1.32 | + | :::$9.1.32$ |
− | :::9.1.33 | + | :::$9.1.33$ |
− | :::9.1.34 | + | :::$9.1.34$ |
− | :::9.1.35 | + | :::$9.1.35$ |
− | :::9.1.36 | + | :::$9.1.36$ |
− | :::9.1.37 | + | :::$9.1.37$ |
− | :::9.1.38 | + | :::$9.1.38$ |
− | :::9.1.39 | + | :::$9.1.39$ |
− | :::9.1.40 | + | :::$9.1.40$ |
− | :::9.1.41 | + | :::$9.1.41$ |
− | :::9.1.42 | + | :::$9.1.42$ |
− | :::9.1.43 | + | :::$9.1.43$ |
− | :::9.1.44 | + | :::$9.1.44$ |
− | :::9.1.45 | + | :::$9.1.45$ |
− | :::9.1.46 | + | :::$9.1.46$ |
− | :::9.1.47 | + | :::$9.1.47$ |
− | :::9.1.48 | + | :::$9.1.48$ |
− | :::9.1.49 | + | :::$9.1.49$ |
− | :::9.1.50 | + | :::$9.1.50$ |
− | :::9.1.51 | + | :::$9.1.51$ |
− | :::9.1.52 | + | :::$9.1.52$ |
− | :::9.1.53 | + | :::$9.1.53$ |
− | :::9.1.54 | + | :::$9.1.54$ |
− | :::9.1.55 | + | :::$9.1.55$ |
− | :::9.1.56 | + | :::$9.1.56$ |
− | :::9.1.57 | + | :::$9.1.57$ |
− | :::9.1.58 | + | :::$9.1.58$ |
− | :::9.1.59 | + | :::$9.1.59$ |
− | :::9.1.60 | + | :::$9.1.60$ |
− | :::9.1.61 | + | :::$9.1.61$ |
− | :::9.1.62 | + | :::$9.1.62$ |
− | :::[[Derivative of Bessel J with respect to its order|9.1.64]] | + | :::[[Derivative of Bessel J with respect to its order|$9.1.64$]] |
− | :::[[Derivative of Bessel Y with respect to its order|9.1.65]] | + | :::[[Derivative of Bessel Y with respect to its order|$9.1.65$]] |
− | :::9.1.66 | + | :::$9.1.66$ |
− | :::9.1.67 | + | :::$9.1.67$ |
− | :::9.1.68 | + | :::$9.1.68$ |
− | :::9.1.69 | + | :::$9.1.69$ |
− | :::9.1.70 | + | :::$9.1.70$ |
− | :::9.1.71 | + | :::$9.1.71$ |
− | :::9.1.72 | + | :::$9.1.72$ |
− | :::9.1.73 | + | :::$9.1.73$ |
− | :::9.1.74 | + | :::$9.1.74$ |
− | :::9.1.75 | + | :::$9.1.75$ |
− | :::9.1.76 | + | :::$9.1.76$ |
− | :::9.1.77 | + | :::$9.1.77$ |
− | :::9.1.78 | + | :::$9.1.78$ |
− | :::9.1.79 | + | :::$9.1.79$ |
− | :::9.1.80 | + | :::$9.1.80$ |
− | :::9.1.81 | + | :::$9.1.81$ |
− | :::9.1.82 | + | :::$9.1.82$ |
− | :::9.1.83 | + | :::$9.1.83$ |
− | :::9.1.84 | + | :::$9.1.84$ |
− | :::9.1.85 | + | :::$9.1.85$ |
− | :::9.1.86 | + | :::$9.1.86$ |
− | :::9.1.87 | + | :::$9.1.87$ |
− | :::9.1.88 | + | :::$9.1.88$ |
− | :::9.1.89 | + | :::$9.1.89$ |
::9.2. Asymptotic Expansions for Large Arguments | ::9.2. Asymptotic Expansions for Large Arguments | ||
::9.3. Asymptotic Expansions for Large Orders | ::9.3. Asymptotic Expansions for Large Orders | ||
Line 371: | Line 371: | ||
:::[[Integral of Bessel J for nu=n+1|$11.1.5$]] | :::[[Integral of Bessel J for nu=n+1|$11.1.5$]] | ||
:::[[Integral of Bessel J for nu=1|$11.1.6$]] | :::[[Integral of Bessel J for nu=1|$11.1.6$]] | ||
− | :::11.1.7 | + | :::$11.1.7$ |
− | :::11.1.8 | + | :::$11.1.8$ |
− | :::11.1.9 | + | :::$11.1.9$ |
− | :::11.1.10 | + | :::$11.1.10$ |
− | :::11.1.11 | + | :::$11.1.11$ |
− | :::11.1.12 | + | :::$11.1.12$ |
− | :::11.1.13 | + | :::$11.1.13$ |
− | :::11.1.14 | + | :::$11.1.14$ |
− | :::11.1.15 | + | :::$11.1.15$ |
− | :::11.1.16 | + | :::$11.1.16$ |
− | :::11.1.17 | + | :::$11.1.17$ |
− | :::11.1.18 | + | :::$11.1.18$ |
− | :::11.1.19 | + | :::$11.1.19$ |
− | :::11.1.20 | + | :::$11.1.20$ |
− | :::11.1.21 | + | :::$11.1.21$ |
− | :::11.1.22 | + | :::$11.1.22$ |
− | :::11.1.23 | + | :::$11.1.23$ |
− | :::11.1.24 | + | :::$11.1.24$ |
− | :::11.1.25 | + | :::$11.1.25$ |
− | :::11.1.26 | + | :::$11.1.26$ |
− | :::11.1.27 | + | :::$11.1.27$ |
− | :::11.1.28 | + | :::$11.1.28$ |
− | :::11.1.29 | + | :::$11.1.29$ |
− | :::11.1.30 | + | :::$11.1.30$ |
− | :::11.1.31 | + | :::$11.1.31$ |
::11.2 Repeated Integrals of $J_n(z)$ and $K_0(z)$ | ::11.2 Repeated Integrals of $J_n(z)$ and $K_0(z)$ | ||
::11.3 Reduction Formulas for Indefinite Integrals | ::11.3 Reduction Formulas for Indefinite Integrals | ||
Line 404: | Line 404: | ||
::12.2 Modified Struve Functions $\mathbf{L}_{\nu}(z)$ | ::12.2 Modified Struve Functions $\mathbf{L}_{\nu}(z)$ | ||
::12.3 Anger and Weber Functions | ::12.3 Anger and Weber Functions | ||
− | :::[[Anger function|12.3.1]]<br /> | + | :::[[Anger function|$12.3.1$]]<br /> |
− | :::[[Anger of integer order is Bessel J|12.3.2]]<br /> | + | :::[[Anger of integer order is Bessel J|$12.3.2$]]<br /> |
− | :::[[Weber function|12.3.3]]<br /> | + | :::[[Weber function|$12.3.3$]]<br /> |
− | :::[[Relationship between Anger function and Weber function|12.3.4]]<br /> | + | :::[[Relationship between Anger function and Weber function|$12.3.4$]]<br /> |
− | :::[[Relationship between Weber function and Anger function|12.3.5]]<br /> | + | :::[[Relationship between Weber function and Anger function|$12.3.5$]]<br /> |
− | :::12.3.6 | + | :::$12.3.6$ |
− | :::12.3.7 | + | :::$12.3.7$ |
− | :::12.3.8 | + | :::$12.3.8$ |
− | :::12.3.9 | + | :::$12.3.9$ |
− | :::12.3.10 | + | :::$12.3.10$ |
::12.4 Use and Extension of the Tables | ::12.4 Use and Extension of the Tables | ||
:13. Confluent Hypergeometric Functions | :13. Confluent Hypergeometric Functions |
Revision as of 05:18, 5 July 2016
Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions with formulas, graphs, and mathematical tables
Published $1964$, Dover Publications
- ISBN 0-486-61272-4.
Online mirrors
Hosted by specialfunctionswiki
Hosted by Simon Fraser University
Hosted by Institute of Physics, Bhubaneswar
Hosted by Bill Welsh (San Diego State University)
Hong Kong Baptist University
BiBTeX
@book {MR0167642, AUTHOR = {Abramowitz, Milton and Stegun, Irene A.}, TITLE = {Handbook of mathematical functions with formulas, graphs, and mathematical tables}, SERIES = {National Bureau of Standards Applied Mathematics Series}, VOLUME = {55}, PUBLISHER = {For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.}, YEAR = {1964}, PAGES = {xiv+1046}, }
Contents
- Preface
- Foreword
- Introduction
- 1. Mathematical Constants
- 2. Physical Constants and Conversion Factors
- 3. Elementary Analytical Methods
- 3.1. Binomial Theorem and Binomial Coefficients; Arithmetic and Geometric Progressions; Arithmetic, Geometric, Harmonic and Generalized Means
- 3.2. Inequalities
- 3.3. Rules for Differentiation and Integration
- 3.4. Limits, Maxima and Minima
- 3.5. Absolute and Relative Errors
- 3.6. Infinite Series
- 3.7. Complex Numbers and Functions
- 3.8. Algebraic Equations
- 3.9. Successive Approximation Methods
- 3.10. Theorems on Continued Fractions
- 3.11. Use and Extension of the Tables
- 3.12. Computing Techniques
- 4. Elementary Transcendental Functions: Logarithmic, Exponential, Circular and Hyperbolic Functions
- 4.1. Logarithmic Function
- 4.2. Exponential Function
- 4.3. Circular Functions
- 4.4. Inverse Circular Functions
- 4.5. Hyperbolic Functions
- 4.6. Inverse Hyperbolic Functions
- 4.7. Use and Extension of the Tables
- 5. Exponential Integral and Related Functions
- 5.1. Exponential Integral
- 5.2. Sine and Cosine Integrals
- 5.3. Use and Extension of the Tables
- 6. Gamma Function and Related Functions
- 6.1. Gamma Function
- $6.1.1$
- $6.1.2$
- $6.1.3$
- $6.1.4$
- $6.1.5$
- $6.1.6$
- $6.1.7$
- $6.1.8$
- $6.1.9$
- $6.1.10$
- $6.1.11$
- $6.1.12$
- $6.1.13$
- $6.1.14$
- $6.1.15$
- $6.1.16$
- $6.1.17$
- $6.1.18$
- $6.1.19$
- $6.1.20$
- $6.1.21$
- $6.1.22$
- $6.1.23$
- $6.1.24$
- $6.1.25$
- $6.1.26$
- $6.1.27$
- $6.1.28$
- $6.1.29$
- $6.1.30$
- $6.1.31$
- $6.1.32$
- $6.1.33$
- $6.1.34$
- $6.1.35$
- $6.1.36$
- $6.1.37$
- $6.1.38$
- $6.1.39$
- $6.1.40$
- $6.1.41$
- $6.1.42$
- $6.1.43$
- $6.1.44$
- $6.1.45$
- $6.1.46$
- $6.1.47$
- $6.1.48$
- $6.1.49$
- $6.1.50$
- 6.2. Beta Function
- 6.3. Psi (Digamma Function)
- 6.4. Polygamma Functions
- 6.5. Incomplete Gamma Function
- 6.6. Incomplete Beta Function
- 6.7. Use and Extension of the Tables
- 6.8. Summation of Rational Series by Means of Polygamma Functions
- 6.1. Gamma Function
- 7. Error Function and Fresnel Integrals
- 7.1. Error Function
- 7.2. Repeated Integrals of the Error Function
- 7.3. Fresnel Integrals
- 7.4. Definite and Indefinite Integrals
- 7.5. Use and Extension of the Tables
- 8. Legendre Functions
- 8.1. Differential Equation
- 8.2. Relations Between Legendre Functions
- 8.3. Values on the Cut
- 8.4. Explicit Expressions
- 8.5. Recurrence Relations
- 8.6. Special Values
- 8.7. Trigonometric Expressions
- 8.8. Integral Representations
- 8.9. Summation Formulas
- 8.10. Asymptotic Expansions
- 8.11. Toroidal Functions
- 8.12. Conical Functions
- 8.13. Relation to Elliptic Integrals
- 8.14. Integrals
- 8.15. Use and Extension of the Tables
- 9. Bessel Functions of Integer Order
- 9.1. Definitions and Elementary Properties
- $9.1.1$
- $9.1.2$
- $9.1.3$ (and $9.1.3$)
- $9.1.4$ (and $9.1.4$)
- 9.1.5 (and $9.1.5$)
- $9.1.6$
- $9.1.7$
- $9.1.8$
- $9.1.9$
- $9.1.10$
- $9.1.11$
- $9.1.12$
- $9.1.13$
- $9.1.14$
- $9.1.15$
- $9.1.16$
- $9.1.17$
- $9.1.18$
- $9.1.19$
- $9.1.20$
- $9.1.21$
- $9.1.22$
- $9.1.23$
- $9.1.24$
- $9.1.25$
- $9.1.26$
- $9.1.27$
- $9.1.28$
- $9.1.29$
- $9.1.30$
- $9.1.31$
- $9.1.32$
- $9.1.33$
- $9.1.34$
- $9.1.35$
- $9.1.36$
- $9.1.37$
- $9.1.38$
- $9.1.39$
- $9.1.40$
- $9.1.41$
- $9.1.42$
- $9.1.43$
- $9.1.44$
- $9.1.45$
- $9.1.46$
- $9.1.47$
- $9.1.48$
- $9.1.49$
- $9.1.50$
- $9.1.51$
- $9.1.52$
- $9.1.53$
- $9.1.54$
- $9.1.55$
- $9.1.56$
- $9.1.57$
- $9.1.58$
- $9.1.59$
- $9.1.60$
- $9.1.61$
- $9.1.62$
- $9.1.64$
- $9.1.65$
- $9.1.66$
- $9.1.67$
- $9.1.68$
- $9.1.69$
- $9.1.70$
- $9.1.71$
- $9.1.72$
- $9.1.73$
- $9.1.74$
- $9.1.75$
- $9.1.76$
- $9.1.77$
- $9.1.78$
- $9.1.79$
- $9.1.80$
- $9.1.81$
- $9.1.82$
- $9.1.83$
- $9.1.84$
- $9.1.85$
- $9.1.86$
- $9.1.87$
- $9.1.88$
- $9.1.89$
- 9.2. Asymptotic Expansions for Large Arguments
- 9.3. Asymptotic Expansions for Large Orders
- 9.4. Polynomial Approximations
- 9.5. Zeros
- 9.6. Definitions and Properties
- 9.7. Asymptotic Expansions
- 9.8. Polynomial Approximations
- 9.9. Definitions and Properties
- 9.10. Asymptotic Expansions
- 9.11. Polynomial Approximations
- 9.12. Use and Extension of the Tables
- 9.1. Definitions and Elementary Properties
- 10. Bessel Functions of Fractional Order
- 10.1 Spherical Bessel Functions
- 10.2 Modified Spherical Bessel Functions
- 10.3 Riccati-Bessel Functions
- 10.4 Airy Functions
- 10.5 Use and Extension of the Tables
- 11. Integrals of Bessel Functions
- 11.1 Simple Integrals of Bessel Functions
- $11.1.1$
- $11.1.2$
- $11.1.3$
- $11.1.4$
- $11.1.5$
- $11.1.6$
- $11.1.7$
- $11.1.8$
- $11.1.9$
- $11.1.10$
- $11.1.11$
- $11.1.12$
- $11.1.13$
- $11.1.14$
- $11.1.15$
- $11.1.16$
- $11.1.17$
- $11.1.18$
- $11.1.19$
- $11.1.20$
- $11.1.21$
- $11.1.22$
- $11.1.23$
- $11.1.24$
- $11.1.25$
- $11.1.26$
- $11.1.27$
- $11.1.28$
- $11.1.29$
- $11.1.30$
- $11.1.31$
- 11.2 Repeated Integrals of $J_n(z)$ and $K_0(z)$
- 11.3 Reduction Formulas for Indefinite Integrals
- 11.4 Definite Integrals
- 11.5 Use and Extensions of the Tables
- 11.1 Simple Integrals of Bessel Functions
- 12. Struve Functions and Related Functions
- 13. Confluent Hypergeometric Functions
- 13.1 Definitions of Kummer and Whittaker Functions
- 13.2 Integral Representations
- 13.3 Connections With Bessel Functions
- 13.4 Recurrence Relations and Differential Properties
- 13.5 Asymptotic Expansions and Limiting Forms
- 13.6 Special Cases
- 13.7 Zeros and Turning Values
- 13.8 Use and Extension of the Tables
- 13.9 Calculation of the Zeros and Turning Points
- 13.10 Graphing $M(a,b,x)$
- 14. Coulomb Wave Functions
- 14.1 Differential Equation, Series Expansions
- 14.2 Recurrence and Wronskian Relations
- 14.3 Integral Representations
- 14.4 Bessel Function Expansions
- 14.5 Asymptotic Expansions
- 14.6 Special Values and Asymptotic Behavior
- 14.7 Use and Extension of the Tables
- 15. Hypergeometric Functions
- 15.1 Gauss Series, Special Elementary Cases, Special Values of the Argument
- 15.2 Differentiation Formulas and Gauss' Relations for Contiguous Functions
- 15.3 Integral Representations and Transformation Formulas
- 15.4 Special Cases of $F(a,b;c;z)$, Polynomials and Legendre Functions
- 15.5 The Hypergeometric Differential Equation
- 15.6 Riemann's Differential Equation
- 15.7 Asymptotic Expansions
- 16. Jacobian Elliptic Functions and Theta Functions
- 16.1 Introduction
- 16.2 Classification of the Twelve Jacobian Elliptic Functions
- 16.3 Relation of the Jacobian Functions to the Copolor Trio
- 16.4 Calculation of the Jacobian Functions by Use of the Arithmetic-Geometric Mean (A.G.M.)
- 16.5 Special Arguments
- 16.6 Jacobian Functions when $m=0$ or $1$
- 16.7 Principal Terms
- 16.8 Change of Argument
- 16.9 Relations Between the Squares of the Functions
- 16.10 Change of Parameter
- 16.11 Reciprocal Parameter
- 16.12 Descending Landen Transformation (Gauss' Transformation)
- 16.13 Approximation in Terms of Circular Functions
- 16.14 Ascending Landen Transformation
- 16.15 Approximation in Terms of Hyperbolic Functions
- 16.16 Derivatives
- 16.17 Addition Theorems
- 16.18 Double Arguments
- 16.19 Half Arguments
- 16.20 Jacobi's Imaginary Transformation
- 16.21 Complex Arguments
- 16.22 Leading Terms of the Series in Ascending Powers of $u$
- 16.23 Series Expansion in Terms of the Nome $q$
- 16.24 Integrals of the Twelve Jacobian Elliptic Functions
- 16.25 Notation for the Integrals of the Squares of the Twelve Jacobian Elliptic Functions
- 16.26 Integrals in Terms of the Elliptic Integral of the Second Kind
- 16.27 Theta Functions; Expansions in Terms of the Nome $q$
- 16.28 Relations Between the Squares of the Theta Functions
- 16.29 Logarithmic Derivatives of the Theta Functions
- 16.30 Logarithms of Theta Functions of Sum and Difference
- 16.31 Jacobi's Notation for Theta Functions
- 16.32 Calculation of Jacobi's Theta Function $\Theta(u|m)$ by Use of the Arithmetic-Geometric Mean
- 16.33 Addition of Quarter-Periods to Jacobi's Eta and Theta Functions
- 16.34 Relation of Jacobi's Zeta Function to the Theta Functions
- 16.35 Calculation of Jacobi's Zeta Function $Z(u|m)$ by Use of the Arithmetic-Geometric Mean
- 16.36 Neville's Notation for Theta Functions
- 16.37 Expression as Infinite Products
- 16.38 Expression as Infinite Series
- 16.39 Use and Extension of the Tables
- 17. Elliptic Integrals
- 17.1 Definition of Elliptic Integrals
- 17.2 Canonical Forms
- 17.3 Complete Elliptic Integrals of the First and Second Kinds
- 17.4 Incomplete Elliptic Integrals of the First and Second Kinds
- 17.5 Landen's Transformation
- 17.6 The Process of the Arithmetic-Geometric Mean
- 17.7 Elliptic Integrals of the Third Kind
- 17.8 Use and Extension of the Tables
- 18. Weierstrass Elliptic and Related Functions
- 18.1 Definitions, Symbolism, Restrictions and Conventions
- 18.2 Homogeneity Relations, Reduction Formulas and Processes
- 18.3 Special Values and Relations
- 18.4 Addition and Multiplication Formulas
- 18.5 Series Expansions
- 18.6 Derivatives and Differential Equations
- 18.7 Integrals
- 18.8 Conformal Mapping
- 18.9 Relations with Complete Elliptic Integrals $K$ and $K'$ and Their Parameter $m$ and with Jacobi's Elliptic Functions
- 18.10 Relations with Theta Functions
- 18.11 Expressing and Elliptic Function in Terms of $\wp$ and $\wp'$
- 18.12 Case $\Delta=0$
- 18.13 Equianharmonic Case ($g_2=0,g_3=1$)
- 18.14 Lemniscatic Case ($g_2=1, g_3=0$)
- 18.15 Pseudo-Lemniscatic Case ($g_2=-1, g_3=0$)
- 18.16 Use and Extension of the Tables
- 19. Parabolic Cylinder Functions
- 20. Mathieu Functions
- 21. Spheroidal Wave Functions
- 22. Orthogonal Polynomials
- 23. Bernoulli and Euler Polynomials, Riemann Zeta Function
- 24. Combinatorial Analysis
- 24.1. Basic numbers
- 24.1.1. Binomial Coefficients
- 24.1.2. Multinomial Coefficients
- 24.1.3. Stirling Numbers of the First Kind
- 24.1.4. Stirling Numbers of the Second Kind
- 24.2. Partitions
- 24.2.1. Unrestricted Partitions
- 24.2.2. Partitions Into Distinct Parts
- 24.3. Number Theoretic Functions
- 24.3.1. The Mobius Function
- 24.3.2. The Euler Function
- 24.3.3. Divisor Functions
- 24.3.4. Primitive Roots
- References
- 24.1. Basic numbers
- 25. Numerical Interpolation, Differentiation and Integration
- 26. Probability Functions
- 27. Miscellaneous Functions
- 28. Scales of Notation
- 29. Laplace Transforms
- Subject Index
- Index of Notations